

CORRELATION OF TNF α EXPRESSION WITH MYCOBACTERIUM TUBERCULOSIS POSITIVITY AND DENSITY IN TUBERCULOUS LYMPH NODE GRANULOMAS

Fiaz Ahmad, Abdurehaman kesrani, Ambreen Anwar

ABSTRACT

Background: Mycobacterium tuberculosis infection of humans is a disease of tremendous importance. Histopathology of the effected tissue is a time honored test for the diagnosis of disease. Due to vast number of granulomatous conditions demonstration of MTb in granuloma is important for definitive diagnosis.

Method: A crossectional study was performed at PGMI Lahore in Collaboration with department of pathology AMC Abbottabad. Fifty diagnosed cases of tuberculous lymphadenitis were included in the study. Three sections of 3micron thickness were taken on different slides and stained for Auramin/Rhodamin stain, Zn Stain and one section was immunochemically stained for TNFa. Results were analyzed using SPSS 21 for Pearson's linear correlation.

Results: Statistical analysis show a strong negative correlation between TNFa expression and MTb positivity and density

Key Words: M. Tuberculosis, Auramin Rhodamin Stain

INTRODUCTION

Tuberculosis is an important disease of humans from time immemorial¹. The disease has recently been discovered in Egyptian mummies². These mummies appear to be 2100 years BC. In the modern world the story is even worse that the disease is responsible for 2 million deaths globally each year and 10 million cases each year³. Its importance has grown in the recent years that its co infection with other diseases such as AIDS has led to an increased mortality and morbidity⁴. Also important is the fact that drug resistance in MTb is causing more morbidity and mortality^{5,6}.

In Pakistan the situation is no different .according to WHO report 2013 Pakistan stands fifth in 21 countries with high burden of tuberculosis. Estimated prevalence of disease is 350 cases per 100 population. Incidence of tuberculosis was 258251 out of which 43416 were extrapulmonary cases. About 60,000 cases died of the disease in 2009⁷.

The causative agent of tuberculosis is mycobacterium tuberculosis. Nine types have been discovered infecting humans in different regions of the world. These are further splitted into 36 subfamilies on the basis of pathogenicity and geography⁷. It was first discovered by Robert Koch in 1882 as causative agent of tuberculosis⁸. After a few years a reliable method of staining was devised by two scientists Franz Ziel and friedrich Neelson

Pathology Department Ayub Medical College Abbottabad

Address for correspondence:

Dr. Fiaz Ahmad

Assistant Professor

Pathology Department Ayub Medical College Abbottabad

E mail. tanolilion@yahoo.com.

and the method was named after them as Ziehl-Nelson (ZN) staining method⁹. Unlike most common bacteria MTb has different staining properties. This is due to its special cell wall with very high lipid contents⁹. Though it stains with difficulty but once stained it retains decolorization by weak acids and alcohols hence named as acid fast bacillus¹⁰.

Staining of acid fast bacillus has been a challenge and many staining modifications were adopted to overcome this difficulty. Auramin / Rhodamin stain is one such stain showing better results over ZN staining method but detection of AFB in granuloma is still low^{11,12}.

In late 19th century Dr. William Coley described necrosis of tumors induced by bacterial toxins¹³. Later it was found to be an inducible factor in blood and tissues that is responsible for necrosis of tumors and has very important role in inflammation and was named Tumor necrosis factor¹⁴. Extensive study on this factor revealed that these are closely related group of pleiotropic cytokines and TNFa is the prototype and most abundant of the group. It is secreted by many cell types such as macrophages, Lymphocytes, neutrophils, fibroblasts and even keratinocytes¹⁵. It has an important role in inflammation, immunity and expression of gene regulation.in pathological processes it has important role in cell proliferation, differentiation, apoptosis, modulation of gene expression and inflammation¹⁶. TNF α like many other cytokines has a pivotal role in defense against MTb regarding granuloma formation and activation of macrophages to launch a killing response against MTb. it has been seen in TNF α knockout mice that susceptibility to tuberculosis is increased and granuloma formation is poor with heavy loads of MTb, a disseminated disease and death.in humans it is observed that patients on TNFa therapy are susceptible to tuberculosis with poorly formed granulomas and rapidly disseminating disease¹⁷. It exists in both free and membrane bound

forms and both forms can lead to migration of lymphocytes and macrophages for granuloma formation¹⁵. In experimental gene knockout animal model deficient in TNF α exposure to MTb leads to rapid necrotic lesions with macrophages packed with MTb depicting an obvious failure to check the growth of and or killing of the bacteria¹⁷.

Mycobacterium tuberculosis are killed in the body either by macrophage after ingestion or by other macrophages after apoptotic death of infected macrophage induced by TNF α . In case of deficiency of this cytokine infected macrophage undergoes a necrotic death conferring a growth advantage to bacteria in extracellular environment¹⁸.

Among other factors responsible for low detection of MTb in granuloma TNF α may be one of them as high expression of this cytokine causes bacterial death by macrophage itself or by apoptosis of heavily infected macrophages and killing by surrounding ones¹⁸. Conversely its low expression may lead to ample multiplication and hence easy detection of MTb in granuloma.

MATERIALS AND METHODS

A cross-sectional study was conducted at PGMI Lahore between 27th December 2011 to 18th April 2014 in collaboration with department of pathology Ayub medical college Abbottabad. A total of 50 diagnosed cases of tuberculous lymphadenopathy with no other pathology were included in the study. Cases were taken by a nonprobability sampling method.

Four slides were cut from each block at 3 μ thickness. One slide was routinely stained for H & E for confirmation of granulomas 2nd was stained for AFB with ZN staining Technique(19) and 3rd was stained for AFB with Auramin/ Rhodamin stain(19). Fourth slide was stained for expression of TNF α with anti human TNF α rat antibody targeted by anti- antihuman TNF α antibody produced in Rabbit. The 2ndry anti body was fluorescent. Immunostain was purchased by Abcam® through a local vender. Product code for primary antibody was ab6671 and ab6717 for 2ndry antibody. Immunostain was standardized on sections of inflamed appendix. From the primary stain 200 μ l each of 1/100 and 1/200 dilutions were prepared and from 2ndry 1/300 and 1/400 each dilutions were prepared. Dilution medium was phosphate sodium chloride/ sodium azide buffer at pH 7.2 supplied with the kit.

Four slides of acutely inflamed appendicular tissue were taken and quenched with 1/50 diluted calf serum for 45 minutes. Different combinations of primary and secondary stains were used on each slide following the staining instructions provided by the vender. The best results were seen with 1/200 primary and 1/400 secondary antibody. Presence of greenish yellow fluorescence was taken positive for TNF α .

Quantification of TNF α was done by taking 10

random pictures at 10X magnification from each slide. The pictures were then opened in Adobe Photoshop 7 software and yellowish green pictures were than calculated and expressed as percentage of the total. Total picture size was 4 megapixels. TNF α expression was expressed as average percentage of 10 readings.

RESULTS

The study comprised of 50 diagnosed cases of tuberculous lymphadenitis. The patients had a mean age range of 9-80 years. Sex distribution was 33:17 female and male respectively. Acid fast bacillus was positive in 18% and 42% respectively with ZN and Auramin / Rhodamin stains. Auramin/Rhodamin stain was more sensitive and had picked all the cases positive on ZN stain and had picked an additional 24% cases.

Out of the 18% Cases positive on ZN stain 12% had low load of bacteria of 1-5/OIF in an average of 10 fields. Two percent had an average load of 6-10/OIF, another 2% had a load of 11-15/OIF and 2% showing a load of more than 15/OIF. In cases positive with Auramin/ Rhodamin stain 22% had a low load of 1-5/OIF, 10% a load of 6-10/OIF, 6% showing load of 11-15/OIF and 4% a load of more than 15/OIF.

Mean TNF α expression was 0.60% \pm 0.68 with range of 0.07—3.95%. Pearson correlation was used for TNF α expression and bacterial positivity/load. A negative correlation was observed between TNF α expression and bacterial positivity in ZN staining Method. The p value was less than .05 hence statistically significant. Similarly a strong negative correlation between TNF α expression and bacterial positivity in Auramin/ Rhodamin stain was observed. The p value was less than .05 hence statistically significant. Pearson's correlation between TNF α expression and bacterial load in Zn staining method shows a negative correlation but with a p value of greater than .05 hence statistically not significant whereas we observed a strong negative correlation between TNF α expression and bacterial density in Auramin/Rhodamin stain and p value was less than .05 hence statistically significant.

DISCUSSION

Among Bacterial infectious diseases tuberculosis is very important because of its rapidly spreading nature and morbidity and mortality it causes as a single infection as well as a confection²⁰. Being a treatable disease early diagnosis holds a key to treatment and avoiding complications²¹. Histopathology is important diagnostic test especially in extrapulmonary location. Demonstration of AFB is very important regarding definitive diagnosis because of large differentials of granulomatous diseases²². Staining yield of AFB is usually low in granulomas. Many factors may be responsible for this low detection and TNF α may be one of them. Tumor necrosis factor alpha is a cytokine that modulated inflammatory and immune response of the

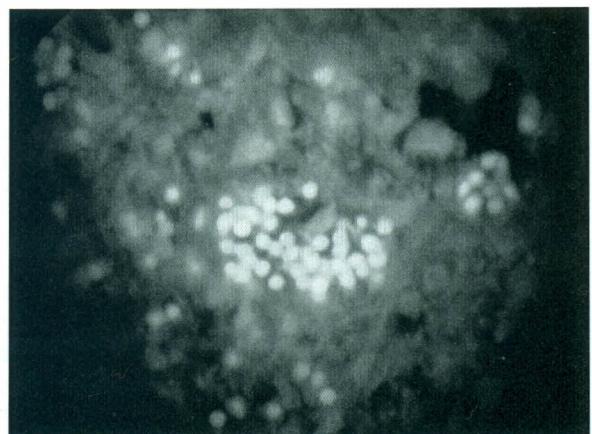
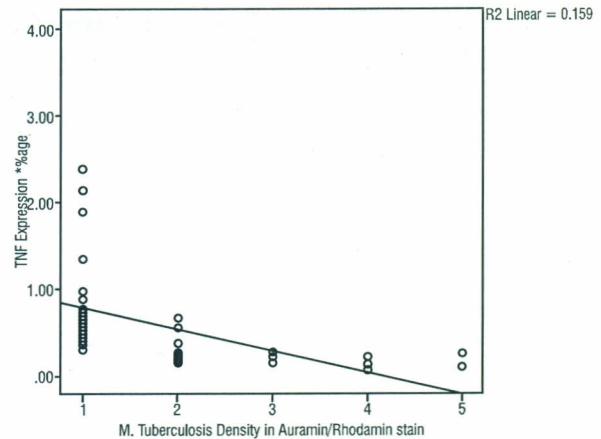
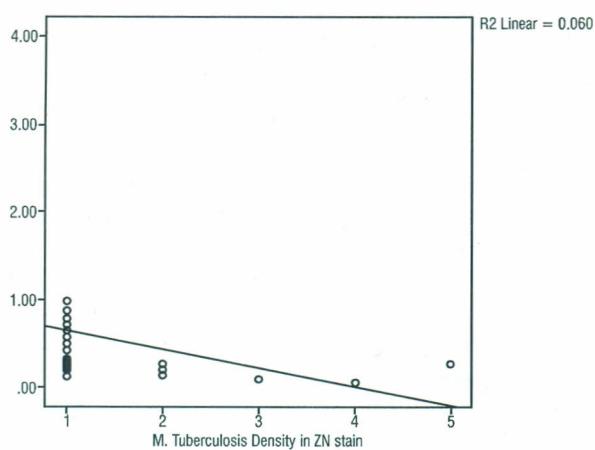
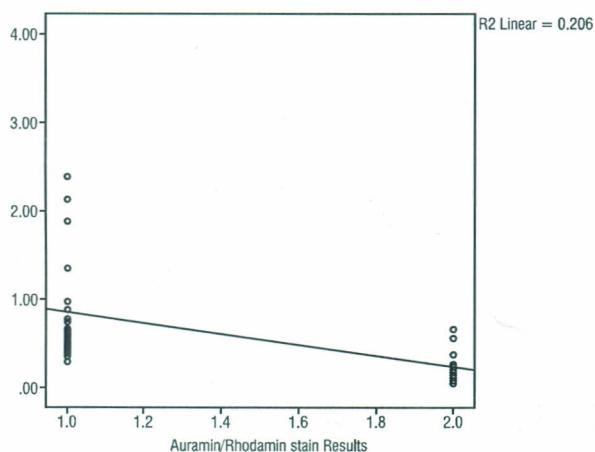
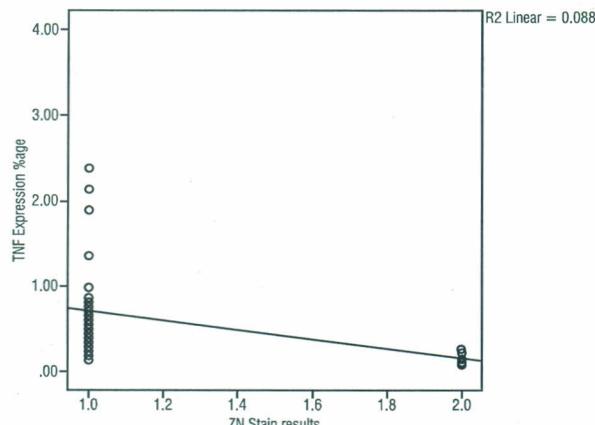






Figure 1: TNF α expression in lymphocytes in a granuloma

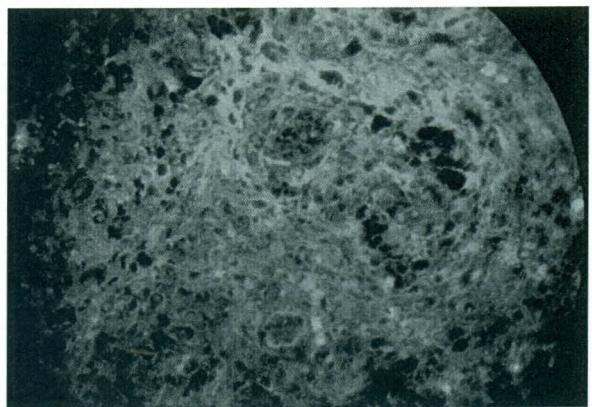


Figure 2: low TNF α expression in a granuloma

individual and has diverse functions. It has a pivotal role in defense against mycobacterial infection²³.

Results show that most population effected was below 40 years(86%). And is consistent with the findings of Munynch et al 2009²⁴ and update 2013. In our study disease was more prevalent in females (66%) results are not in agreement with Munynch et al.²⁵ who claims a higher prevalence in males, however a regional study conducted in India by Mukherjee shows a higher prevalence(54%) in females.

Lower positivity of ZN stain is in accordance with most national and international studies²⁶. Auramin /Rhodamin stain was positive in 42% of the cases. many studies like Ulukanligil et al.²⁷ and Shrestha. et al.²⁸ shows a positivity of 82% and 71% respectively in smear and Ghenaath et al.²⁹ show 26% positivity . study conducted by shrestha et al was done on cases proven positive on mycobacterial culture. His gross result including culture negative cases was 36% close to our



Figure 3: M tuberculosis Auramin/Rhodamin stained section

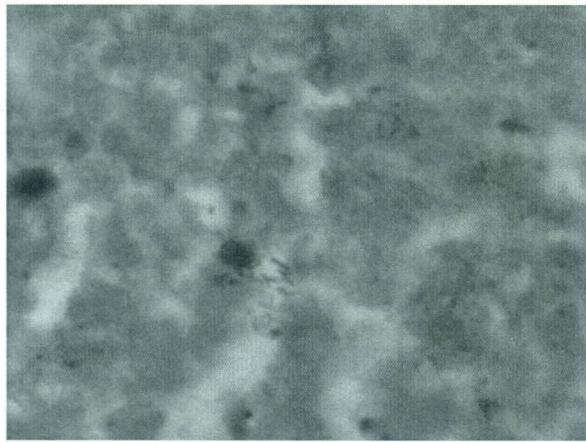


Figure 4: M tuberculosis ZN stained section

study. The study of Ghennath et al may be low because of smaller sample size he selected for his study.

TNF α quantification was done by photographing the immunostained slides under UV light, processed in Adobe Photoshop 7 to get percentage expression. Digital imaging and image processing in Adobe Photoshop are newly discovered tools for anatomical pathology. Quantification of target antigen in immunohistochemistry with the help of Adobe Photoshop is in practice since late nineties as Lehr et al.³⁰ developed a similar technique to quantify ER & PR receptors in breast cancer. More work was also done by Long et al in 2004³¹.

A strong negative correlation was seen between Mycobacterial density / positivity and TNF α expression in our study. Many international studies Bourigault et al³²; Kapoor et al.³³ have proved that optimal expression of this cytokine restricts growth and multiplication of Mycobacterium tuberculosis in granulomas. Similarly Mohan et al.³⁴, Olleriset et al.³⁵; Lin et al.³⁶ have depicted that inhibition of this cytokine leads to multiplication and dissemination of mycobacteria in tissue. Hence the results of our study are in accordance with most studies conducted in this regard.

CONCLUSION

Results of this study show that there is a negative correlation between *Mycobacterium Tuberculosis* positivity/density and Tumor Necrosis factor alpha expression in tuberculous granulomas. This may be one of the many causes for low detection of *M Tuberculosis* in granulomas. Further studies are needed to evaluate all the factors responsible for low detection in wax embedded tissues.

REFERENCES

1. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, et al. Ancient origin and gene mosaicism of the progenitor of *Mycobacterium tuberculosis*. *PLoS Pathog.* 2005;1(1):e5.
2. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Characterization of *Mycobacterium tuberculosis* complex DNAs from Egyptian mummies by spoligotyping. *J Clin Microbiol.* 2003;41(1):359-67.
3. Eurosurveillance editorial t. WHO publishes Global tuberculosis report 2013. *Euro Surveill.* 2013;18(43).
4. Jaryal A, Raina R, Sarkar M, Sharma A. Manifestations of tuberculosis in HIV/AIDS patients and its relationship with CD4 count. *Lung India.* 2011;28(4):263-6.
5. Leung KS, Siu GK, Tam KK, To SW, Rajwani R, Ho PL, et al. Comparative Genomic Analysis of Two Clonally Related Multidrug Resistant *Mycobacterium tuberculosis* by Single Molecule Real Time Sequencing. *Front Cell Infect Microbiol.* 2017;7:478.
6. Espinal MA, Laszlo A, Simonsen L, Boulahbal F, Kim SJ, Reniero A, et al. Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. *N Engl J Med.* 2001;344(17):1294-303.
7. Sebban M, Mokrousov I, Rastogi N, Sola C. A data-mining approach to spacer oligonucleotide typing of *Mycobacterium tuberculosis*. *Bioinformatics.* 2002;18(2):235-43.
8. Sakula A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. *Thorax.* 1982;37(4):246-51.
9. Dahl JL. Electron microscopy analysis of *Mycobacterium tuberculosis* cell division. *FEMS Microbiol Lett.* 2004;240(1):15-20.
10. Pfyffer GE, Palicova F. *Mycobacterium: General Characteristics, Laboratory Detection, and Staining Procedures**. *Manual of Clinical Microbiology*, 10th Edition: American Society of Microbiology; 2011.
11. Chakravorty S, Sen MK, Tyagi JS. Diagnosis of Extrapulmonary Tuberculosis by Smear, Culture, and PCR Using Universal Sample Processing Technology. *Journal of Clinical Microbiology.*

2005;43(9):4357-62.

12. Bao JR, Clark RB, Master RN, Shier KL, Eklund LL. Acid-fast bacterium detection and identification from paraffin-embedded tissues using a PCR-pyrosequencing method. *J Clin Pathol*. 2018;71(2):148-53.
13. Hoption Cann SA, van Netten JP, van Netten C. Dr William Coley and tumour regression: a place in history or in the future. *Postgraduate Medical Journal*. 2003;79(938):672-80.
14. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. *Proc Natl Acad Sci U S A*. 1975;72(9):3666-70.
15. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF Receptor Superfamilies. *Cell*. 2004;104(4):487-501.
16. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. *Nature Reviews Immunology*. 2003;3:745.
17. Saunders BM, Cooper AM. Restraining mycobacteria: Role of granulomas in mycobacterial infections. *Immunology and Cell Biology*. 2000;78(4):334-41.
18. Butler RE, Brodin P, Jang J, Jang M-S, Robertson BD, Gicquel B, et al. The Balance of Apoptotic and Necrotic Cell Death in *Mycobacterium tuberculosis* Infected Macrophages Is Not Dependent on Bacterial Virulence. *PLOS ONE*. 2012;7(10):e47573.
19. John D Bancroft MG. *Microorganisms*. 6th ed. China: Churchill livingstone elsevire; 2008.
20. PAUL W. WRIGHT RJW, JR.,2,3* NATHAN W. WRIGHT,1, BARBARA A. BROWN ADEG, 4. Sensitivity of Fluorochrome Microscopy for Detection of *Mycobacterium tuberculosis* versus Nontuberculous Mycobacteria. *JOURNAL OF CLINICAL MICROBIOLOGY*. 1998;36(4):3.
21. El-Kebir M. Modeling Tuberculosis in Lung and Central Nervous System: Vrije Universiteit Amsterdam; 2010.
22. Mukhopadhyay S, Gal AA. Granulomatous lung disease: an approach to the differential diagnosis. *Archives of pathology & laboratory medicine*. 2010;134(5):667-90.
23. Tuberculosis associated with blocking agents against tumor necrosis factor-alpha--California, 2002-2003. *MMWR Morbidity and mortality weekly report*. 2004;53(30):683-6.
24. A De Muynck SS, A Ghaffar,1 H. Sadiq2. Tuberculosis Control in Pakistan: Critical Analysis of its Implementation. *Journal of Pakistan Medical Association*. 2009;59(4 suppl 1):68-73.
25. Mukherjee A, Kalra N, Beena K. Immunohistochemical detection of mycobacterial antigen in tuberculous lymphadenitis. *Ind J Tub*. 2002;49:213.
26. Allen JL. A modified Ziehl-Neelsen stain for mycobacteria. *Med Lab Sci*. 1992;49(2):99-102.
27. Ulukanligil M, Aslan G, Taşçı S. A comparative study on the different staining methods and number of specimens for the detection of acid fast bacilli. *Memórias do Instituto Oswaldo Cruz*. 2000;95:855-8.
28. Shrestha D, Bhattacharya S, Lekhak B, Kumar BR. Evaluation of different staining techniques (Ziehl Neelsen stain, Kinyoun stain, modified cold stain, fluorochrome stain) for the diagnosis of pulmonary tuberculosis. *J Nepal Health Res Counc*. 2005;3:8-16.
29. Ghenaat J, Omidi A, Ghazvini K, Ayatollahi H, Hossein Jafarian A. Comparison of Multiplex PCR and Acid fast and Auramine-Rhodamine staining for detection of *Mycobacterium tuberculosis* and nontuberculosis Mycobacteria in Paraffin-Embedded pleural and bronchial tissues with granulomatous inflammation and caseous necrosis. *The Internet Journal of Microbiology*. 2006;4:4-7.
30. Hans-Anton L, David AM, David C, Giuseppe S, Allen MG. Application of Photoshop-based Image Analysis to Quantification of Hormone Receptor Expression in Breast Cancer. *Journal of Histochemistry & Cytochemistry*. 1997;45(11):1559-65.
31. Leong F, Leong A. Digital photography in anatomical pathology. *Journal of Postgraduate Medicine*. 2004;50(1):62-9.
32. Bourigault M-L, Vacher R, Rose S, Olleros ML, Janssens J-P, Quesniaux VF, et al. Tumor necrosis factor neutralization combined with chemotherapy enhances *Mycobacterium tuberculosis* clearance and reduces lung pathology. *American journal of clinical and experimental immunology*. 2013;2(1):124.
33. Kapoor N, Pawar S, Sirakova TD, Deb C, Warren WL, Kolattukudy PE. Human granuloma in vitro model, for TB dormancy and resuscitation. *PloS one*. 2013;8(1):e53657.
34. Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, et al. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. *Infection and immunity*. 2001;69(3):1847-55.
35. Olleros ML, Guler R, Vesin D, Parapanov R, Marchal G, Martinez-Soria E, et al. Contribution of transmembrane tumor necrosis factor to host defense against *Mycobacterium bovis* bacillus Calmette-guerin and *Mycobacterium tuberculosis* infections. *The American journal of pathology*. 2005;166(4):1109-20.
36. Lin PL, Myers A, Le'Kneitah Smith CB, Bigbee M, Fuhrman C, Grieser H, et al. TNF neutralization results in disseminated disease during acute and latent *M. tuberculosis* infection with normal granuloma structure. *Arthritis and rheumatism*. 2010;62(2):340.